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The traditional Dammann grating is a phase-only modulation, and its theoretical foundation is based on far-field
diffraction. Here we extend the traditional Fresnel zone plate (FZP) into a Fresnel–Dammann zone plate (FDZP),
which is, in essence, considered as a FZP with Dammann modulation. Different from the Dammann grating, a
single FDZP can generate array illumination from the near field to the far field by means of amplitude-only
modulation in the absence of phase modulation. We then give some array illuminations operated in a water
window to validate the feasibility and validity. This kind of wave-front modulation technology can be applied
to array focusing and imaging from the x-ray to the EUV region. © 2016 Optical Society of America

OCIS codes: (050.1950) Diffraction gratings; (050.1965) Diffractive lenses; (340.7480) X-rays, soft x-rays, extreme ultraviolet (EUV).

http://dx.doi.org/10.1364/AO.55.007218

1. INTRODUCTION

A Dammann grating (DG), which is also considered as a holo-
graphic grating [1], is in essence a binary-phase grating whose
trip-point phases are optimized to generate some equal-
intensity spots at different diffraction orders [2–5]. Generally,
the traditional DG has been applied to produce either one-
dimensional (1D) or two-dimensional (2D) array illumination
in a single far-field plane [2–5], whose functionality can be usu-
ally completed by use of a positive lens. With further research,
multiple equal-intensity spots on-axis have been generated by
means of a Dammann zone plate (DZP) [6]. Recently, based on
the above fundamental technologies, three-dimensional (3D)
array spots were successfully realized by a combination of
DZP and 2D-array illumination DG [7]. Array illuminators
have been widely applied in optical couplers [8,9], beam split-
ters [10], lithography [11], profilometry [12], generation of
special fields [13,14], laser systems [15,16], and so on.

From the previous work of predecessors, we know that DG
has two significant characteristics: it is a phase-only diffractive
optical element (DOE), and only works in the far field. The
former characteristic is not suitable for array illumination in
the x-ray and the EUV regions due to the strong absorption,
and the latter restricts its application field to a certain extent.
By contrast, Fresnel zone plates (FZP) can focus the light
into a pronounced spot from the x-ray to the EUV region.
Unfortunately, using traditional FZP it is difficult to generate
array illumination. Here we extend the traditional FZP into a

Fresnel–Dammann zone plate (FDZP), which is considered as
a FZP with Dammann modulation. Different from the binary-
phase DG for array illumination, FDZP can also be an ampli-
tude modulation. In this case, FDZP not only has the function
of traditional FZP, but also produces 3D array spots. Array
illumination can be applied for laser micromachining, optical
tweezers, beam shaping and laser demonstration, array focusing
and imaging, etc.

2. FRESNEL–DAMMANN ZONE PLATE (FDZP)

A. Principle
In this section, we will take 2nd-order 3-circle illumination as
an example, and investigate the difference between DG and
FDZP in detail. Figure 1 shows the optical path of circular
Dammann grating (CDG) and FDZP. CDG is a binary-phase
grating. Figure 2 illustrates the concrete structure of them. In
Fig 2(a), the black is the pi phase, while the white is the zero
phase. Either zero or pi phase is a simply connected region. For
FDZP in Fig 2(b), the fuchsia, green, and red denote the odd
zones, and the rest are even zones. Note that the fuchsia and
yellow area is the innermost region, the green and blue area is
the middle region, and the red and blue-green area is the out-
most region. The above three regions completely coincide with
those of CDG, which means that FDZP and the corresponding
CDG share the same normalized transitional radii. Now we
take into account the amplitude-only FDZP, wherein the even
(or yellow) zones are in use in the innermost region, the odd
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(green) zones are in use in the middle region, and the even
(blue-green) zones are in use in the outermost region.
Different from the binary phase of CDG, the phase of
FDZP is continuous from zero to pi for odd zones, while
the even zones vary from negative π to zero. Obviously, the
value of the phase from zero to π is located at the upper-
half-plane in the complex plane, and has the same optical effect
to the zero phases of CDG. As for the other case, it is vice versa.

B. Diffraction Model
Based on the Fresnel–Kirchhoff diffraction theory, we can get
the diffracted field of a single Fresnel zone, that is

Un�S2� �
Z Z

nth-zone
En�S1�

eik�p�q�

iλpq
cos θq − cos θp

2
dS1; (1)

where p is the distance from the light source to the FDZP,
and q is the diffracted distance between the FDZP and the
observed plane. θp is the incident angle, and θq is the diffraction
angle. S1 denotes the coordinates on the planar FDZP, S2
denotes the observed plane, and En denotes the light field
of the corresponding S1 area on the nth-zone of the pla-
nar FDZP.

According to the linear superposition principle, the total
diffracted field distribution U �S2� at the observed plane is
the simple sum of the individual diffracted fields. So the total
diffracted fields U �S2� can be written as

U �S2� �
XN
n�1

Un�S2�: (2)

C. Array Illumination of Amplitude-only FDZP
Due to the too-short wavelength of x-rays or EUVs, it is nearly
impossible to operate the wavefront by phase-only CDG. In
contrast, FDZP can be constructed in the form of amplitude
modulation, so it has no difficulty in producing array illumi-
nation in the x-ray region.

The wavelength λ0 is 4.2 nm, which is in the water window.
FDZP has 300 zones totally, and the optical path difference
scaling factor (OPDSF) K 0 is equal to 0.5, and its focal
length f 0 is 250 μm. Accordingly, the outmost zone width
is 29.66 nm. Taking the planar wave incidence into account,
in case (1), the odd zones are in use on condition that the radius
is less than 0.715 times the radius of the device; otherwise, the
even zones are in use. In case (2), the odd zones are in use on
condition that the radius is less than 0.242 times or larger than
0.662 times the radius of the device; otherwise, the even zones
are in use. The first FDZP can generate 1st-order 2-circle
dark-hollow illumination, while the second FDZP can generate
2nd-order 3-circle illumination, as shown in Fig. 3.

3. EXTENDED APPLICATION OF FDZP

A. Multi-spots on Axis
Traditional DG can generate array spots in a single plane. In
comparison, DZP can generate multi-spots on the axis. The
basic concept is that some fine structures are introduced into
the DG in order to obtain a series of phase reversal points in
each binary-phase region. These characteristics result in all the
spots being located at some defocusing planes; therefore, the
distance between any two axial spots is at the micro-scale.

Compared with DZP, FDZP can overcome these draw-
backs, and generate the multi-spots on the axis, which has axial
spacing in the macro-scale. References [17,18] had taken use of
a diffractive optical lever to increase the number of axis spots by
optical path difference scaling factor (OPDSF). We find that
when the number of zones of FDZP goes up to some extent,
each spot will be split into so many parts that even a single spot
has multiple peaks. On the other hand, from the definition of
the Fresnel zone r2n ≈ 2nK λf we know that the OPDSF and
the wavelength have the same status to affect the number of
axial spots. That is to say, the increase of OPDSF is equivalent
to the decrease of incident wavelength, and vice versa. So, we
can recur to the shortened wavelength to realize multi-spots on
the axis. Note that in order to get more than one axial spot,
their optical structures are different, since the optical path dif-
ference (OPD) between two adjacent zones of the former
method equals K λ where K is not equal to 0.5, but the latter

Fig. 1. 2nd-order 3-circle illumination generated by CDG or
FDZP.

Fig. 2. Schematic of (a) CDG with binary phase, (b) FDZP with
opaque and transparent zones.

Fig. 3. Array illumination on the focal plane located at 250 μm
(a) 1st-order, 2-circle dark-hollow, (b) 2nd-order, 3-circle.
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is essentially a traditional FZP. Different optical structures
mean they have different transmission functions. The benefit
of the latter method is that it is effective at preventing the split
of axial spots.

To understand the concept well, we present a concrete ex-
ample. A reference FZP, which is in essence a FDZP without
Dammann modulation, has been constructed with 1022 zones
totally, a focal length 250 μm, and the designed wavelength is
4.2 nm. The outmost zone width is 16.13 nm. If the value of the
OPDSF is set as 1.32, the corresponding outmost zone width is
26.49 nm. In this case we can obtain two axial spots, as shown
in Fig. 4(a). To make the contrast even more remarkable, we
simultaneously give the enlarged inset which corresponds to
the first focal spot. In fact, although the second axial spot is
not discussed, it is also split. Figure 4(b) shows that when a plane
wave with a wavelength of 3.18 nm illuminates the reference
FZP, we also get two axial spots. The difference between them
is that the two spots are all not split this time.

Then, still taking FDZP without Dammann modulation as
an example, the structure parameters are the same as those in
Fig. 3. Naturally, it has degenerated into a traditional FZP.
When a planar wave with wavelength 1.91 nm is incident
on the FZP, two axial spots are generated, and are located
at 183.1 μm and 550.6 μm, respectively. If the incident wave-
length is 1.0 nm, there are three axial spots which are located at
209.9 μm, 350.2 μm, and 1051.0 μm, respectively. The two
results are shown in Fig. 5. In addition, each inset denotes
the transverse intensity distribution on its own focal plane.
Note that the ratio of the two FWHMs (full width at half-
maximums) are equal to that of their focal length. We can fur-
ther present the position formula of the axial spots on condition
that the OPDSF is equal to 0.5, that is,

Fn �
λ0f 0

�2n� 1�λ ; n ∈ N; Fn < … < F 0: (3)

Obviously, the distance between any pair of spots is far away
from the designed focal plane. By contrast, the multi-spots on
the axis produced by DZP are all distributed near the focal
plane.

B. Multi-layer, Multi-circle Illumination
As we know, the combination of CDG and DZP can generate
3D array spots. Likewise, all the spots seem to be the same size
because they are located at some defocusing planes with small
spacing. As for FDZPs, they can produce array spots with
large spacing, which results in a different transverse resolution
on the different position. Figure 6 illustrates the schematic
described above.

In Section 2, we have separately obtained 2-circle and 3-
circle illumination in a single plane. Similarly, multi-layer array
illumination with controllable and adjustable characteristics
can be easily produced by shortened wavelength incidence.
For the same FDZP calculated in Fig. 3(a), when the incident
wavelength is reduced to 45.45% relative to the reference wave-
length, 2-layer, 2-circle illumination has been successfully gen-
erated. The two focal planes are located at 183.1 μm and
550.6 μm, respectively. Figure 7 indicates the corresponding
simulation results. If we adopt the same structure in Fig. 3(b),
meanwhile, and reduce the incident wavelength to 23.81%, we
finally get 3-layer, 2nd-order, 3-circle illumination. The three
focal planes, as shown in Fig. 8, are located at 209.9 μm,
350.2 μm, and 1051.0 μm, respectively.

Based on the above discussion, we can take the following
steps to construct a FDZP in order to realize more than one

Fig. 4. Two axial spots generated by the reference FZP with differ-
ent optical structures, (a) K � 2.64K 0, (b) λ � λ0∕1.32.

Fig. 5. Multi-spots on the axis generated by FDZP without
Dammann modulation, (a) λ � 1.91 nm, (b) λ � 1.00 nm.

Fig. 6. Schematic of 3D array spots generated by a combination of
CDG and DZP or a single FDZP.
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layer spot: (1) to set the operating wavelength; (2) to design a
FZP according to a virtual wavelength which is much longer
than the operation wavelength; (3) to choose the suitable
Fresnel zones to replace the simply connected region of opti-
mized DG. However, the resolution is still determined by the
smallest feature size of the transparent region. It is important to
add that, if we want to get multiple spots with controllable
and adjustable characteristics, we can adopt other principles,
such as the aperiodic Greek-ladder or the generalized Fibonacci
structure [17–19].

4. CONCLUSION

Traditional phase-only DG can realize multiple spots in the far
field. But the distance between any pair of layers is usually at
the micro-scale. Due to the strong absorption, it cannot be ap-
plied to the focusing of x-rays and EUVs. We have extended the
traditional FZP into FDZP. The major difference among them
is that each simply connected region of DG is replaced by dis-
crete Fresnel zones. This way, FDZP can be constructed in the
form of amplitude modulation, and can be used for focusing at

short wavelength regions. In addition, the distance between any
pair of layers comes up to the macro-scale. Of course, for the
visible wavelengths, if the Fresnel zones not in use are reversed
by relief microstructures, the diffraction efficiency of FDZP can
be improved greatly. This kind of diffractive optical element
may have many applications in multiple image fusion and laser
optics.
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